Flow per grinder pump $=11 \mathrm{gpm}\left(0.0245 \mathrm{ft}^{3} / \mathrm{s}\right)$
Area $=\left[\Pi(D)^{2}\right] / 4$
Area $\sim 1.25^{\prime \prime}$ pipe $=0.0085 \mathrm{ft}^{2}$
Area $\sim 1.5^{\prime \prime}$ pipe $=0.0123 \mathrm{ft}^{2}$
Area $\sim^{\sim} 2^{\prime \prime}$ pipe $=0.0218 \mathrm{ft}^{2}$
Area $\sim 3 "$ pipe $=0.0491 \mathrm{ft}^{2}$
Check velocity $>2 \mathrm{ft} / \mathrm{s}$
(\# of pumps $\times 0.0245 \mathrm{ft}^{3} / \mathrm{s}$) divided by area of pipe size $=$ velocity
TDH $=h_{f}+$ elev diff.
(Hazen Williams) $h_{f}=10.44(\mathrm{~L})\left[\mathrm{Q}^{1.85} /\left(\mathrm{C}^{1.85 *} \mathrm{~d}^{4.87}\right)\right.$]
$\mathrm{L}=\mathrm{ft}, \mathrm{Q}=\mathrm{gpm}, \mathrm{d}=\mathrm{in}, \mathrm{C}=140$ (assume new pipe... for older pipe C can decrease evaluate case by case) and $h_{f}=f t$

Find h_{f} for each zone flow and length of pipe change.
Reverse calculate 185 minus elevation loss. Assume pipe size. Determine flow. Use table to determine approximate number of pumps.

